Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Embedded Spectral Descriptors: Learning the point-wise correspondence metric via Siamese neural networks (1710.06368v3)

Published 17 Oct 2017 in cs.GR and cs.CV

Abstract: A robust and informative local shape descriptor plays an important role in mesh registration. In this regard, spectral descriptors that are based on the spectrum of the Laplace-Beltrami operator have been a popular subject of research for the last decade due to their advantageous properties, such as isometry invariance. Despite such, however, spectral descriptors often fail to give a correct similarity measure for non-isometric cases where the metric distortion between the models is large. Hence, they are not reliable for correspondence matching problems when the models are not isometric. In this paper, it is proposed a method to improve the similarity metric of spectral descriptors for correspondence matching problems. We embed a spectral shape descriptor into a different metric space where the Euclidean distance between the elements directly indicates the geometric dissimilarity. We design and train a Siamese neural network to find such an embedding, where the embedded descriptors are promoted to rearrange based on the geometric similarity. We demonstrate our approach can significantly enhance the performance of the conventional spectral descriptors by the simple augmentation achieved via the Siamese neural network in comparison to other state-of-the-art methods.

Citations (13)

Summary

We haven't generated a summary for this paper yet.