Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-Language Learning for Program Classification using Bilateral Tree-Based Convolutional Neural Networks (1710.06159v2)

Published 17 Oct 2017 in cs.LG

Abstract: Towards the vision of translating code that implements an algorithm from one programming language into another, this paper proposes an approach for automated program classification using bilateral tree-based convolutional neural networks (BiTBCNNs). It is layered on top of two tree-based convolutional neural networks (TBCNNs), each of which recognizes the algorithm of code written in an individual programming language. The combination layer of the networks recognizes the similarities and differences among code in different programming languages. The BiTBCNNs are trained using the source code in different languages but known to implement the same algorithms and/or functionalities. For a preliminary evaluation, we use 3591 Java and 3534 C++ code snippets from 6 algorithms we crawled systematically from GitHub. We obtained over 90% accuracy in the cross-language binary classification task to tell whether any given two code snippets implement the same algorithm. Also, for the algorithm classification task, i.e., to predict which one of the six algorithm labels is implemented by an arbitrary C++ code snippet, we achieved over 80% precision.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Nghi D. Q. Bui (30 papers)
  2. Lingxiao Jiang (36 papers)
  3. Yijun Yu (31 papers)
Citations (39)

Summary

We haven't generated a summary for this paper yet.