Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convexification of Queueing Formulas by Mixed-Integer Second-Order Cone Programming: An Application to a Discrete Location Problem with Congestion (1710.05794v1)

Published 16 Oct 2017 in math.OC, cs.DM, and math.PR

Abstract: Mixed-Integer Second-Order Cone Programs (MISOCPs) form a nice class of mixed-inter convex programs, which can be solved very efficiently due to the recent advances in optimization solvers. Our paper bridges the gap between modeling a class of optimization problems and using MISOCP solvers. It is shown how various performance metrics of M/G/1 queues can be molded by different MISOCPs. To motivate our method practically, it is first applied to a challenging stochastic location problem with congestion, which is broadly used to design socially optimal service networks. Four different MISOCPs are developed and compared on sets of benchmark test problems. The new formulations efficiently solve large-size test problems, which cannot be solved by the best existing method. Then, the general applicability of our method is shown for similar optimization problems that use queue-theoretic performance measures to address customer satisfaction and service quality.

Citations (13)

Summary

We haven't generated a summary for this paper yet.