Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimally accurate higher-order finite element methods on polytopial approximations of domains with smooth boundaries (1710.05628v3)

Published 16 Oct 2017 in math.NA

Abstract: Meshing of geometric domains having curved boundaries by affine simplices produces a polytopial approximation of those domains. The resulting error in the representation of the domain limits the accuracy of finite element methods based on such meshes. On the other hand, the simplicity of affine meshes makes them a desirable modeling tool in many applications. In this paper, we develop and analyze higher-order accurate finite element methods that remain stable and optimally accurate on polytopial approximations of domains with smooth boundaries. This is achieved by constraining a judiciously chosen extension of the finite element solution on the polytopial domain to weakly match the prescribed boundary condition on the true geometric boundary. We provide numerical examples that highlight key properties of the new method and that illustrate the optimal $H1$ and $L2$-norm convergence rates.

Summary

We haven't generated a summary for this paper yet.