Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clickbait Detection in Tweets Using Self-attentive Network (1710.05364v1)

Published 15 Oct 2017 in cs.CL

Abstract: Clickbait detection in tweets remains an elusive challenge. In this paper, we describe the solution for the Zingel Clickbait Detector at the Clickbait Challenge 2017, which is capable of evaluating each tweet's level of click baiting. We first reformat the regression problem as a multi-classification problem, based on the annotation scheme. To perform multi-classification, we apply a token-level, self-attentive mechanism on the hidden states of bi-directional Gated Recurrent Units (biGRU), which enables the model to generate tweets' task-specific vector representations by attending to important tokens. The self-attentive neural network can be trained end-to-end, without involving any manual feature engineering. Our detector ranked first in the final evaluation of Clickbait Challenge 2017.

Citations (53)

Summary

We haven't generated a summary for this paper yet.