Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learners that Use Little Information (1710.05233v3)

Published 14 Oct 2017 in cs.LG, cs.AI, cs.CR, cs.IT, and math.IT

Abstract: We study learning algorithms that are restricted to using a small amount of information from their input sample. We introduce a category of learning algorithms we term $d$-bit information learners, which are algorithms whose output conveys at most $d$ bits of information of their input. A central theme in this work is that such algorithms generalize. We focus on the learning capacity of these algorithms, and prove sample complexity bounds with tight dependencies on the confidence and error parameters. We also observe connections with well studied notions such as sample compression schemes, Occam's razor, PAC-Bayes and differential privacy. We discuss an approach that allows us to prove upper bounds on the amount of information that algorithms reveal about their inputs, and also provide a lower bound by showing a simple concept class for which every (possibly randomized) empirical risk minimizer must reveal a lot of information. On the other hand, we show that in the distribution-dependent setting every VC class has empirical risk minimizers that do not reveal a lot of information.

Citations (3)

Summary

We haven't generated a summary for this paper yet.