Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Improved Modified Cholesky Decomposition Method for Precision Matrix Estimation (1710.05163v2)

Published 14 Oct 2017 in stat.ML

Abstract: The modified Cholesky decomposition is commonly used for precision matrix estimation given a specified order of random variables. However, the order of variables is often not available or cannot be pre-determined. In this work, we propose to address the variable order issue in the modified Cholesky decomposition for sparse precision matrix estimation. The key idea is to effectively combine a set of estimates obtained from multiple permutations of variable orders, and to efficiently encourage the sparse structure for the resultant estimate by the thresholding technique on the ensemble Cholesky factor matrix. The consistent property of the proposed estimate is established under some weak regularity conditions. Simulation studies are conducted to evaluate the performance of the proposed method in comparison with several existing approaches. The proposed method is also applied into linear discriminant analysis of real data for classification.

Citations (26)

Summary

We haven't generated a summary for this paper yet.