Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GHCLNet: A Generalized Hierarchically tuned Contact Lens detection Network (1710.05152v1)

Published 14 Oct 2017 in cs.CV

Abstract: Iris serves as one of the best biometric modality owing to its complex, unique and stable structure. However, it can still be spoofed using fabricated eyeballs and contact lens. Accurate identification of contact lens is must for reliable performance of any biometric authentication system based on this modality. In this paper, we present a novel approach for detecting contact lens using a Generalized Hierarchically tuned Contact Lens detection Network (GHCLNet) . We have proposed hierarchical architecture for three class oculus classification namely: no lens, soft lens and cosmetic lens. Our network architecture is inspired by ResNet-50 model. This network works on raw input iris images without any pre-processing and segmentation requirement and this is one of its prodigious strength. We have performed extensive experimentation on two publicly available data-sets namely: 1)IIIT-D 2)ND and on IIT-K data-set (not publicly available) to ensure the generalizability of our network. The proposed architecture results are quite promising and outperforms the available state-of-the-art lens detection algorithms.

Citations (14)

Summary

We haven't generated a summary for this paper yet.