Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On statistics of bi-orthogonal eigenvectors in real and complex Ginibre ensembles: combining partial Schur decomposition with supersymmetry (1710.04699v2)

Published 12 Oct 2017 in math-ph, cond-mat.dis-nn, math.MP, and math.PR

Abstract: We suggest a method of studying the joint probability density (JPD) of an eigenvalue and the associated 'non-orthogonality overlap factor' (also known as the 'eigenvalue condition number') of the left and right eigenvectors for non-selfadjoint Gaussian random matrices of size $N\times N$. First we derive the general finite $N$ expression for the JPD of a real eigenvalue $\lambda$ and the associated non-orthogonality factor in the real Ginibre ensemble, and then analyze its 'bulk' and 'edge' scaling limits. The ensuing distribution is maximally heavy-tailed, so that all integer moments beyond normalization are divergent. A similar calculation for a complex eigenvalue $z$ and the associated non-orthogonality factor in the complex Ginibre ensemble is presented as well and yields a distribution with the finite first moment. Its 'bulk' scaling limit yields a distribution whose first moment reproduces the well-known result of Chalker and Mehlig \cite{ChalkerMehlig1998}, and we provide the 'edge' scaling distribution for this case as well. Our method involves evaluating the ensemble average of products and ratios of integer and half-integer powers of characteristic polynomials for Ginibre matrices, which we perform in the framework of a supersymmetry approach. Our paper complements recent studies by Bourgade and Dubach \cite{BourgadeDubach}.

Summary

We haven't generated a summary for this paper yet.