Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Information Theoretic Framework for Active De-anonymization in Social Networks Based on Group Memberships (1710.04163v1)

Published 11 Oct 2017 in cs.IT, cs.CR, cs.SI, and math.IT

Abstract: In this paper, a new mathematical formulation for the problem of de-anonymizing social network users by actively querying their membership in social network groups is introduced. In this formulation, the attacker has access to a noisy observation of the group membership of each user in the social network. When an unidentified victim visits a malicious website, the attacker uses browser history sniffing to make queries regarding the victim's social media activity. Particularly, it can make polar queries regarding the victim's group memberships and the victim's identity. The attacker receives noisy responses to her queries. The goal is to de-anonymize the victim with the minimum number of queries. Starting with a rigorous mathematical model for this active de-anonymization problem, an upper bound on the attacker's expected query cost is derived, and new attack algorithms are proposed which achieve this bound. These algorithms vary in computational cost and performance. The results suggest that prior heuristic approaches to this problem provide sub-optimal solutions.

Citations (12)

Summary

We haven't generated a summary for this paper yet.