Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image retargeting via Beltrami representation (1710.04034v1)

Published 11 Oct 2017 in cs.CV and cs.GR

Abstract: Image retargeting aims to resize an image to one with a prescribed aspect ratio. Simple scaling inevitably introduces unnatural geometric distortions on the important content of the image. In this paper, we propose a simple and yet effective method to resize an image, which preserves the geometry of the important content, using the Beltrami representation. Our algorithm allows users to interactively label content regions as well as line structures. Image resizing can then be achieved by warping the image by an orientation-preserving bijective warping map with controlled distortion. The warping map is represented by its Beltrami representation, which captures the local geometric distortion of the map. By carefully prescribing the values of the Beltrami representation, images with different complexity can be effectively resized. Our method does not require solving any optimization problems and tuning parameters throughout the process. This results in a simple and efficient algorithm to solve the image retargeting problem. Extensive experiments have been carried out, which demonstrate the efficacy of our proposed method.

Citations (13)

Summary

We haven't generated a summary for this paper yet.