Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Domination Equivalence Classes of Paths (1710.03871v1)

Published 11 Oct 2017 in math.CO

Abstract: A dominating set $S$ of a graph $G$ of order $n$ is a subset of the vertices of $G$ such that every vertex is either in $S$ or adjacent to a vertex of $S$. %The domination number $G$, denoted $\gamma (G)$, is the cardinality of the smallest dominating set of $G$. The domination polynomial is defined by $D(G,x) = \sum d(G,i)xi$ where $d(G,i)$ is the number of dominating sets in $G$ with cardinality $i$. Two graphs $G$ and $H$ are considered $\mathcal{D}$-equivalent if $D(G,x)=D(H,x)$. The equivalence class of $G$, denoted $[G]$, is the set of all graphs $\mathcal{D}$-equivalent to $G$. Extending previous results, we determine the equivalence classes of all paths.

Summary

We haven't generated a summary for this paper yet.