Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning: Framework, Applications, and Embedded Implementations (1710.03792v1)

Published 10 Oct 2017 in cs.AI

Abstract: The recent breakthroughs of deep reinforcement learning (DRL) technique in Alpha Go and playing Atari have set a good example in handling large state and actions spaces of complicated control problems. The DRL technique is comprised of (i) an offline deep neural network (DNN) construction phase, which derives the correlation between each state-action pair of the system and its value function, and (ii) an online deep Q-learning phase, which adaptively derives the optimal action and updates value estimates. In this paper, we first present the general DRL framework, which can be widely utilized in many applications with different optimization objectives. This is followed by the introduction of three specific applications: the cloud computing resource allocation problem, the residential smart grid task scheduling problem, and building HVAC system optimal control problem. The effectiveness of the DRL technique in these three cyber-physical applications have been validated. Finally, this paper investigates the stochastic computing-based hardware implementations of the DRL framework, which consumes a significant improvement in area efficiency and power consumption compared with binary-based implementation counterparts.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Hongjia Li (11 papers)
  2. Tianshu Wei (1 paper)
  3. Ao Ren (14 papers)
  4. Qi Zhu (160 papers)
  5. Yanzhi Wang (197 papers)
Citations (42)