Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Volatility estimation for stochastic PDEs using high-frequency observations (1710.03519v3)

Published 10 Oct 2017 in math.ST, math.PR, stat.ME, and stat.TH

Abstract: We study the parameter estimation for parabolic, linear, second-order, stochastic partial differential equations (SPDEs) observing a mild solution on a discrete grid in time and space. A high-frequency regime is considered where the mesh of the grid in the time variable goes to zero. Focusing on volatility estimation, we provide an explicit and easy to implement method of moments estimator based on squared increments. The estimator is consistent and admits a central limit theorem. This is established moreover for the joint estimation of the integrated volatility and parameters in the differential operator in a semi-parametric framework. Starting from a representation of the solution of the SPDE with Dirichlet boundary conditions as an infinite factor model and exploiting mixing-type properties of time series, the theory considerably differs from the statistics for semi-martingales literature. The performance of the method is illustrated in a simulation study.

Summary

We haven't generated a summary for this paper yet.