Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fractional Differential Equations Involving Caputo Fractional Derivative with Mittag-Leffler Non-Singular Kernel: Comparison Principles and Applications (1710.03407v1)

Published 10 Oct 2017 in math.CA

Abstract: In this paper we study linear and nonlinear fractional differential equations involving the Caputo fractional derivative with Mittag-Leffler non-singular kernel of order $0<\alpha<1.$ We first obtain a new estimate of the fractional derivative of a function at its extreme points and derive a necessary condition for the existence of a solution to the linear fractional equation. The obtained sufficient condition determine the initial condition of the associated fractional initial value problem. We then derive comparison principles to the linear fractional equations. We apply these principles to obtain a norm estimate of solutions to the linear equation and to obtain a uniqueness result to the nonlinear equation. We also derive a lower and upper bound of solutions to the nonlinear equation. The applicability of the new results is illustrated through several examples.

Summary

We haven't generated a summary for this paper yet.