2000 character limit reached
New Inequalities of the Kantorovich Type With Two Negative Parameters (1710.02937v5)
Published 9 Oct 2017 in math.FA
Abstract: We show the following result: Let $A,B\in \mathbb{B}\left( \mathcal{H} \right)$ be two strictly positive operators such that $A\le B$ and $m{{\mathbf{1}}{\mathcal{H}}}\le B\le M{{\mathbf{1}}{\mathcal{H}}}$ for some scalars $0<m<M$. Then [{{B}{p}}\le \exp \left( \frac{M{{\mathbf{1}}{\mathcal{H}}}-B}{M-m}\ln {{m}{p}}+\frac{B-m{{\mathbf{1}}{\mathcal{H}}}}{M-m}\ln {{M}{p}} \right)\le K\left( m,M,p,q \right){{A}{q}}\quad\text{ for }p\le 0,-1\le q\le 0] where $K\left( m,M,p,q \right)$ is the generalized Kantorovich constant with two parameters. In addition, we obtain Kantorovich type inequalities for the chaotic order.