Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multiscale Patch Based Convolutional Network for Brain Tumor Segmentation (1710.02316v1)

Published 6 Oct 2017 in cs.CV and q-bio.NC

Abstract: This article presents a multiscale patch based convolutional neural network for the automatic segmentation of brain tumors in multi-modality 3D MR images. We use multiscale deep supervision and inputs to train a convolutional network. We evaluate the effectiveness of the proposed approach on the BRATS 2017 segmentation challenge where we obtained dice scores of 0.755, 0.900, 0.782 and 95% Hausdorff distance of 3.63mm, 4.10mm, and 6.81mm for enhanced tumor core, whole tumor and tumor core respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Jean Stawiaski (3 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.