Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Morphing of Manifold-Valued Images inspired by Discrete Geodesics in Image Spaces (1710.02289v3)

Published 6 Oct 2017 in math.NA and math.DG

Abstract: This paper addresses the morphing of manifold-valued images based on the time discrete geodesic paths model of Berkels, Effland and Rumpf 2015. Although for our manifold-valued setting such an interpretation of the energy functional is not available so far, the model is interesting on its own. We prove the existence of a minimizing sequence within the set of $L2(\Omega,\mathcal{H})$ images having values in a finite dimensional Hadamard manifold $\mathcal{H}$ together with a minimizing sequence of admissible diffeomorphisms. To this end, we show that the continuous manifold-valued functions are dense in $L2(\Omega,\mathcal{H})$. We propose a space discrete model based on a finite difference approach on staggered grids, where we focus on the linearized elastic potential in the regularizing term. The numerical minimization alternates between i) the computation of a deformation sequence between given images via the parallel solution of certain registration problems for manifold-valued images, and ii) the computation of an image sequence with fixed first (template) and last (reference) frame based on a given sequence of deformations via the solution of a system of equations arising from the corresponding Euler-Lagrange equation. Numerical examples give a proof of the concept of our ideas.

Summary

We haven't generated a summary for this paper yet.