Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Borel functors, interpretations, and strong conceptual completeness for $\mathcal L_{ω_1ω}$ (1710.02246v2)

Published 6 Oct 2017 in math.LO and math.CT

Abstract: We prove a strong conceptual completeness theorem (in the sense of Makkai) for the infinitary logic $\mathcal L_{\omega_1\omega}$: every countable $\mathcal L_{\omega_1\omega}$-theory can be canonically recovered from its standard Borel groupoid of countable models, up to a suitable syntactical notion of equivalence. This implies that given two theories $(\mathcal L, \mathcal T)$ and $(\mathcal L', \mathcal T')$ (in possibly different languages $\mathcal L, \mathcal L'$), every Borel functor $\mathsf{Mod}(\mathcal L', \mathcal T') \to \mathsf{Mod}(\mathcal L, \mathcal T)$ between the respective groupoids of countable models is Borel naturally isomorphic to the functor induced by some $\mathcal L'_{\omega_1\omega}$-interpretation of $\mathcal T$ in $\mathcal T'$. This generalizes a recent result of Harrison-Trainor, Miller, and Montalb\'an in the case where $\mathcal T, \mathcal T'$ each have a single countable model up to isomorphism.

Summary

We haven't generated a summary for this paper yet.