Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploration in Feature Space for Reinforcement Learning (1710.02210v1)

Published 5 Oct 2017 in cs.AI

Abstract: The infamous exploration-exploitation dilemma is one of the oldest and most important problems in reinforcement learning (RL). Deliberate and effective exploration is necessary for RL agents to succeed in most environments. However, until very recently even very sophisticated RL algorithms employed simple, undirected exploration strategies in large-scale RL tasks. We introduce a new optimistic count-based exploration algorithm for RL that is feasible in high-dimensional MDPs. The success of RL algorithms in these domains depends crucially on generalization from limited training experience. Function approximation techniques enable RL agents to generalize in order to estimate the value of unvisited states, but at present few methods have achieved generalization about the agent's uncertainty regarding unvisited states. We present a new method for computing a generalized state visit-count, which allows the agent to estimate the uncertainty associated with any state. In contrast to existing exploration techniques, our $\phi$-$\textit{pseudocount}$ achieves generalization by exploiting the feature representation of the state space that is used for value function approximation. States that have less frequently observed features are deemed more uncertain. The resulting $\phi$-$\textit{Exploration-Bonus}$ algorithm rewards the agent for exploring in feature space rather than in the original state space. This method is simpler and less computationally expensive than some previous proposals, and achieves near state-of-the-art results on high-dimensional RL benchmarks. In particular, we report world-class results on several notoriously difficult Atari 2600 video games, including Montezuma's Revenge.

Citations (4)

Summary

We haven't generated a summary for this paper yet.