Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite Time Identification in Unstable Linear Systems (1710.01852v2)

Published 5 Oct 2017 in cs.SY, econ.EM, eess.SP, math.ST, and stat.TH

Abstract: Identification of the parameters of stable linear dynamical systems is a well-studied problem in the literature, both in the low and high-dimensional settings. However, there are hardly any results for the unstable case, especially regarding finite time bounds. For this setting, classical results on least-squares estimation of the dynamics parameters are not applicable and therefore new concepts and technical approaches need to be developed to address the issue. Unstable linear systems arise in key real applications in control theory, econometrics, and finance. This study establishes finite time bounds for the identification error of the least-squares estimates for a fairly large class of heavy-tailed noise distributions, and transition matrices of such systems. The results relate the time length (samples) required for estimation to a function of the problem dimension and key characteristics of the true underlying transition matrix and the noise distribution. To establish them, appropriate concentration inequalities for random matrices and for sequences of martingale differences are leveraged.

Citations (134)

Summary

We haven't generated a summary for this paper yet.