Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sum of Square Proof for Brascamp-Lieb Type Inequality (1710.01458v2)

Published 4 Oct 2017 in cs.CC and math.CA

Abstract: Brascamp-Lieb inequality is an important mathematical tool in analysis, geometry and information theory. There are various ways to prove Brascamp-Lieb inequality such as heat flow method, Brownian motion and subadditivity of the entropy. While Brascamp-Lieb inequality is originally stated in Euclidean Space, discussed Brascamp-Lieb inequality for discrete Abelian group and discussed Brascamp-Lieb inequality for Markov semigroups. Many mathematical inequalities can be formulated as algebraic inequalities which asserts some given polynomial is nonnegative. In 1927, Artin proved that any non- negative polynomial can be represented as a sum of squares of rational functions, which can be further formulated as a polynomial certificate of the nonnegativity of the polynomial. This is a Sum of Square proof of the inequality. Take the degree of the polynomial certificate as the degree of Sum of Square proof. The degree of an Sum of Square proof determines the complexity of generating such proof by Sum of Square algorithm which is a powerful tool for optimization and computer aided proof. In this paper, we give a Sum of Square proof for some special settings of Brascamp- Lieb inequality following and and discuss some applications of Brascamp-Lieb inequality on Abelian group and Euclidean Sphere. If the original description of the inequality has constant degree and d is constant, the degree of the proof is also constant. Therefore, low degree sum of square algorithm can fully capture the power of low degree finite Brascamp-Lieb inequality.

Citations (1)

Summary

We haven't generated a summary for this paper yet.