Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal DNN Primitive Selection with Partitioned Boolean Quadratic Programming (1710.01079v2)

Published 3 Oct 2017 in cs.PF, cs.AI, and cs.CV

Abstract: Deep Neural Networks (DNNs) require very large amounts of computation both for training and for inference when deployed in the field. Many different algorithms have been proposed to implement the most computationally expensive layers of DNNs. Further, each of these algorithms has a large number of variants, which offer different trade-offs of parallelism, data locality, memory footprint, and execution time. In addition, specific algorithms operate much more efficiently on specialized data layouts and formats. We state the problem of optimal primitive selection in the presence of data format transformations, and show that it is NP-hard by demonstrating an embedding in the Partitioned Boolean Quadratic Assignment problem (PBQP). We propose an analytic solution via a PBQP solver, and evaluate our approach experimentally by optimizing several popular DNNs using a library of more than 70 DNN primitives, on an embedded platform and a general purpose platform. We show experimentally that significant gains are possible versus the state of the art vendor libraries by using a principled analytic solution to the problem of layout selection in the presence of data format transformations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Andrew Anderson (21 papers)
  2. David Gregg (34 papers)
Citations (32)

Summary

We haven't generated a summary for this paper yet.