Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing for Global Network Structure Using Small Subgraph Statistics (1710.00862v2)

Published 2 Oct 2017 in stat.ME, cs.SI, math.ST, stat.AP, and stat.TH

Abstract: We study the problem of testing for community structure in networks using relations between the observed frequencies of small subgraphs. We propose a simple test for the existence of communities based only on the frequencies of three-node subgraphs. The test statistic is shown to be asymptotically normal under a null assumption of no community structure, and to have power approaching one under a composite alternative hypothesis of a degree-corrected stochastic block model. We also derive a version of the test that applies to multivariate Gaussian data. Our approach achieves near-optimal detection rates for the presence of community structure, in regimes where the signal-to-noise is too weak to explicitly estimate the communities themselves, using existing computationally efficient algorithms. We demonstrate how the method can be effective for detecting structure in social networks, citation networks for scientific articles, and correlations of stock returns between companies on the S&P 500.

Citations (46)

Summary

We haven't generated a summary for this paper yet.