Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Study of Cross-domain Generative Models applied to Cartoon Series (1710.00755v1)

Published 29 Sep 2017 in cs.CV

Abstract: We investigate Generative Adversarial Networks (GANs) to model one particular kind of image: frames from TV cartoons. Cartoons are particularly interesting because their visual appearance emphasizes the important semantic information about a scene while abstracting out the less important details, but each cartoon series has a distinctive artistic style that performs this abstraction in different ways. We consider a dataset consisting of images from two popular television cartoon series, Family Guy and The Simpsons. We examine the ability of GANs to generate images from each of these two domains, when trained independently as well as on both domains jointly. We find that generative models may be capable of finding semantic-level correspondences between these two image domains despite the unsupervised setting, even when the training data does not give labeled alignments between them.

Summary

We haven't generated a summary for this paper yet.