Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attentive Convolution: Equipping CNNs with RNN-style Attention Mechanisms (1710.00519v2)

Published 2 Oct 2017 in cs.CL

Abstract: In NLP, convolutional neural networks (CNNs) have benefited less than recurrent neural networks (RNNs) from attention mechanisms. We hypothesize that this is because the attention in CNNs has been mainly implemented as attentive pooling (i.e., it is applied to pooling) rather than as attentive convolution (i.e., it is integrated into convolution). Convolution is the differentiator of CNNs in that it can powerfully model the higher-level representation of a word by taking into account its local fixed-size context in the input text tx. In this work, we propose an attentive convolution network, ATTCONV. It extends the context scope of the convolution operation, deriving higher-level features for a word not only from local context, but also information extracted from nonlocal context by the attention mechanism commonly used in RNNs. This nonlocal context can come (i) from parts of the input text tx that are distant or (ii) from extra (i.e., external) contexts ty. Experiments on sentence modeling with zero-context (sentiment analysis), single-context (textual entailment) and multiple-context (claim verification) demonstrate the effectiveness of ATTCONV in sentence representation learning with the incorporation of context. In particular, attentive convolution outperforms attentive pooling and is a strong competitor to popular attentive RNNs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Wenpeng Yin (69 papers)
  2. Hinrich Schütze (250 papers)
Citations (41)

Summary

We haven't generated a summary for this paper yet.