Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wikipedia graph mining: dynamic structure of collective memory (1710.00398v5)

Published 1 Oct 2017 in cs.IR

Abstract: Wikipedia is the biggest encyclopedia ever created and the fifth most visited website in the world. Tens of millions of people surf it every day, seeking answers to various questions. Collective user activity on its pages leaves publicly available footprints of human behavior, making Wikipedia an excellent source for analysis of collective behavior. In this work, we propose a distributed graph-based event extraction model, inspired by the Hebbian learning theory. The model exploits collective effect of the dynamics to discover events. We focus on data-streams with underlying graph structure and perform several large-scale experiments on the Wikipedia visitor activity data. We show that the presented model is scalable regarding time-series length and graph density, providing a distributed implementation of the proposed algorithm. We extract dynamical patterns of collective activity and demonstrate that they correspond to meaningful clusters of associated events, reflected in the Wikipedia articles. We also illustrate evolutionary dynamics of the graphs over time to highlight changing nature of visitors' interests. Finally, we discuss clusters of events that model collective recall process and represent collective memories - common memories shared by a group of people.

Summary

We haven't generated a summary for this paper yet.