Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

UTD-CRSS Submission for MGB-3 Arabic Dialect Identification: Front-end and Back-end Advancements on Broadcast Speech (1710.00113v1)

Published 29 Sep 2017 in eess.AS and cs.SD

Abstract: This study presents systems submitted by the University of Texas at Dallas, Center for Robust Speech Systems (UTD-CRSS) to the MGB-3 Arabic Dialect Identification (ADI) subtask. This task is defined to discriminate between five dialects of Arabic, including Egyptian, Gulf, Levantine, North African, and Modern Standard Arabic. We develop multiple single systems with different front-end representations and back-end classifiers. At the front-end level, feature extraction methods such as Mel-frequency cepstral coefficients (MFCCs) and two types of bottleneck features (BNF) are studied for an i-Vector framework. As for the back-end level, Gaussian back-end (GB), and Generative Adversarial Networks (GANs) classifiers are applied alternately. The best submission (contrastive) is achieved for the ADI subtask with an accuracy of 76.94% by augmenting the randomly chosen part of the development dataset. Further, with a post evaluation correction in the submitted system, final accuracy is increased to 79.76%, which represents the best performance achieved so far for the challenge on the test dataset.

Citations (10)

Summary

We haven't generated a summary for this paper yet.