Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification of the Bounds on the Probability of Ruin for L{é}vy Processes with Light-tailed Jumps (1709.10295v2)

Published 29 Sep 2017 in math.PR and q-fin.RM

Abstract: In this note, we study the ultimate ruin probabilities of a real-valued L{\'e}vy process X with light-tailed negative jumps. It is well-known that, for such L{\'e}vy processes, the probability of ruin decreases as an exponential function with a rate given by the root of the Laplace exponent, when the initial value goes to infinity. Under the additional assumption that X has integrable positive jumps, we show how a finer analysis of the Laplace exponent gives in fact a complete description of the bounds on the probability of ruin for this class of L{\'e}vy processes. This leads to the identification of a case that is not considered in the literature and for which we give an example. We then apply the result to various risk models and in particular the Cram{\'e}r-Lundberg model perturbed by Brownian motion.

Summary

We haven't generated a summary for this paper yet.