Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

In-Field Peduncle Detection of Sweet Peppers for Robotic Harvesting: a comparative study (1709.10275v1)

Published 29 Sep 2017 in cs.RO

Abstract: Robotic harvesting of crops has the potential to disrupt current agricultural practices. A key element to enabling robotic harvesting is to safely remove the crop from the plant which often involves locating and cutting the peduncle, the part of the crop that attaches it to the main stem of the plant. In this paper we present a comparative study of two methods for performing peduncle detection. The first method is based on classic colour and geometric features obtained from the scene with a support vector machine classifier, referred to as PFH-SVM. The second method is an efficient deep neural network approach, MiniInception, that is able to be deployed on a robotic platform. In both cases we employ a secondary filtering process that enforces reasonable assumptions about the crop structure, such as the proximity of the peduncle to the crop. Our tests are conducted on Harvey, a sweet pepper harvesting robot, and is evaluated in a greenhouse using two varieties of sweet pepper, Ducati and Mercuno. We demonstrate that the MiniInception method achieves impressive accuracy and considerably outperforms the PFH-SVM approach achieving an F1 score of 0.564 and 0.302 respectively.

Citations (1)

Summary

We haven't generated a summary for this paper yet.