Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Persistence, coexistence and extinction in two species chemotaxis models on bounded heterogeneous environments (1709.10040v4)

Published 28 Sep 2017 in math.AP

Abstract: In this paper, we consider a two species chemotaxis system of parabolic-parabolic-elliptic type with Lotka-Volterra type competition terms in heterogeneous media. We first find various conditions on the parameters which guarantee the global existence and boundedness of classical solutions with nonnegative initial functions. Next, we find further conditions on the parameters which establish the persistence of the two species. Then, under the same set of conditions for the persistence of two species, we prove the existence of coexistence states. Finally we prove the extinction phenomena in the sense that one of the species dies out asymptotically and the other reaches its carrying capacity as time goes to infinity. The persistence in general two species chemotaxis systems is studied for the first time. Several important techniques are developed to study the persistence and coexistence of the two species chemotaxis systems. Many existing results on the persistence, coexistence, and extinction on two species competition systems without chemotaxis are recovered.

Summary

We haven't generated a summary for this paper yet.