Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonuniqueness of weak solutions to the Navier-Stokes equation (1709.10033v4)

Published 28 Sep 2017 in math.AP, math-ph, and math.MP

Abstract: For initial datum of finite kinetic energy, Leray has proven in 1934 that there exists at least one global in time finite energy weak solution of the 3D Navier-Stokes equations. In this paper we prove that weak solutions of the 3D Navier-Stokes equations are not unique in the class of weak solutions with finite kinetic energy. Moreover, we prove that Holder continuous dissipative weak solutions of the 3D Euler equations may be obtained as a strong vanishing viscosity limit of a sequence of finite energy weak solutions of the 3D Navier-Stokes equations.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com