Papers
Topics
Authors
Recent
Search
2000 character limit reached

Emergent Phases of Fractonic Matter

Published 27 Sep 2017 in cond-mat.str-el, cond-mat.stat-mech, and quant-ph | (1709.09673v2)

Abstract: Fractons are emergent particles which are immobile in isolation, but which can move together in dipolar pairs or other small clusters. These exotic excitations naturally occur in certain quantum phases of matter described by tensor gauge theories. Previous research has focused on the properties of small numbers of fractons and their interactions, effectively mapping out the "Standard Model" of fractons. In the present work, however, we consider systems with a finite density of either fractons or their dipolar bound states, with a focus on the $U(1)$ fracton models. We study some of the phases in which emergent fractonic matter can exist, thereby initiating the study of the "condensed matter" of fractons. We begin by considering a system with a finite density of fractons, which we show can exhibit microemulsion physics, in which fractons form small-scale clusters emulsed in a phase dominated by long-range repulsion. We then move on to study systems with a finite density of mobile dipoles, which have phases analogous to many conventional condensed matter phases. We focus on two major examples: Fermi liquids and quantum Hall phases. A finite density of fermionic dipoles will form a Fermi surface and enter a Fermi liquid phase. Interestingly, this dipolar Fermi liquid exhibits a finite-temperature phase transition, corresponding to an unbinding transition of fractons. Finally, we study chiral two-dimensional phases corresponding to dipoles in "quantum Hall" states of their emergent magnetic field. We study numerous aspects of these generalized quantum Hall systems, such as their edge theories and ground state degeneracies.

Citations (84)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.