Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic approximations to the nodes and weights of Gauss-Hermite and Gauss-Laguerre quadratures (1709.09656v1)

Published 27 Sep 2017 in math.CA

Abstract: Asymptotic approximations to the zeros of Hermite and Laguerre polynomials are given, together with methods for obtaining the coefficients in the expansions. These approximations can be used as a standalone method of computation of Gaussian quadratures for high enough degrees, with Gaussian weights computed from asymptotic approximations for the orthogonal polynomials. We provide numerical evidence showing that for degrees greater than $100$ the asymptotic methods are enough for a double precision accuracy computation ($15$-$16$ digits) of the nodes and weights of the Gauss--Hermite and Gauss--Laguerre quadratures.

Summary

We haven't generated a summary for this paper yet.