On the bound states and correlation functions of a class of Calogero-type quantum many-body problems with balanced loss and gain
Abstract: The quantization of many-body systems with balanced loss and gain is investigated. Two types of models characterized by either translational invariance or rotational symmetry under rotation in a pseudo-Euclidean space are considered. A partial set of integrals of motion are constructed for each type of model. Specific examples for the translationally invariant systems include Calogero-type many-body systems with balanced loss and gain, where each particle is interacting with other particles via four-body inverse-square potential plus pair-wise two-body harmonic terms. A many-body system interacting via short range four-body plus six-body inverse square potential with pair-wise two-body harmonic terms in presence of balanced loss and gain is also considered. In general, the eigen values of these two models contain quantized as well as continuous spectra. A completely quantized spectra and bound states involving all the particles may be obtained by employing box-normalization on the particles having continuous spectra. The normalization of the ground state wave functions in appropriate Stoke wedges is discussed. The exact n-particle correlation functions of these two models are obtained through a mapping of the relevant integrals to known results in random matrix theory. It is shown that a rotationally symmetric system with generic many-body potential does not have entirely real spectra, leading to unstable quantum modes. The eigenvalue problem of a Hamiltonian system with balanced loss and gain and admitting dynamical O(2, 1) symmetry is also considered.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.