Improved Moser-Trudinger type inequalities in the hyperbolic space $\mathbb H^n$ (1709.09608v2)
Abstract: We establish an improved version of the Moser-Trudinger inequality in the hyperbolic space $\mathbb Hn$, $n\geq 2$. Namely, we prove the following result: for any $0 \leq \lambda < \left(\frac{n-1}n\right)n$, then we have $$ \sup_{\substack{u\in C_0\infty(\mathbb Hn) \int_{\mathbb Hn} |\nabla_g u|gn d\text{Vol}_g -\lambda \int{\mathbb Hn} |u|n d\text{ Vol}g \leq 1}} \int{\mathbb Hn} \Phi_n(\alpha_n |u|{\frac{n}{n-1}}) d\text{ Vol}g < \infty, $$ where $\alpha_n = n \omega{n-1}{\frac1{n-1}}$, $\omega_{n-1}$ denotes the surface area of the unit sphere in $\mathbb Rn$ and $\Phi_n(t) = et -\sum_{j=0}{n-2}\frac{tj}{j!}$. This improves the Moser-Trudinger inequality in hyperbolic spaces obtained recently by Mancini and Sandeep, by Mancini, Sandeep and Tintarev and by Adimurthi and Tintarev. In the limiting case $\lambda =(\frac{n-1}n)n$, we prove a Moser-Trudinger inequality with exact growth in $\mathbb Hn$, $$ \sup_{\substack{u\in C_0\infty(\mathbb Hn) \int_{\mathbb Hn} |\nabla_g u|gn d\text{ Vol}_g -(\frac{n-1}n)n \int{\mathbb Hn} |u|n d\text{ Vol}g \leq 1}} \frac{1}{\int{\mathbb Hn} |u|n d\text{ Vol}g}\int{\mathbb Hn} \frac{\Phi_n(\alpha_n |u|{\frac{n}{n-1}})}{(1+ |u|){\frac n{n-1}}} d\text{ Vol}_g < \infty. $$ This improves the Moser-Trudinger inequality with exact growth in $\mathbb Hn$ established by Lu and Tang.