Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling WiFi Traffic for White Space Prediction in Wireless Sensor Networks (1709.08950v1)

Published 26 Sep 2017 in cs.NI

Abstract: Cross Technology Interference (CTI) is a prevalent phenomenon in the 2.4 GHz unlicensed spectrum causing packet losses and increased channel contention. In particular, WiFi interference is a severe problem for low-power wireless networks as its presence causes a significant degradation of the overall performance. In this paper, we propose a proactive approach based on WiFi interference modeling for accurately predicting transmission opportunities for low-power wireless networks. We leverage statistical analysis of real-world WiFi traces to learn aggregated traffic characteristics in terms of Inter-Arrival Time (IAT) that, once captured into a specific 2nd order Markov Modulated Poisson Process (MMPP(2)) model, enable accurate estimation of interference. We further use a hidden Markov model (HMM) for channel occupancy prediction. We evaluated the performance of i) the MMPP(2) traffic model w.r.t. real-world traces and an existing Pareto model for accurately characterizing the WiFi traffic and, ii) compared the HMM based white space prediction to random channel access. We report encouraging results for using interference modeling for white space prediction.

Citations (4)

Summary

We haven't generated a summary for this paper yet.