Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Projective Class Rings of a family of pointed Hopf algebras of Rank two (1709.08782v1)

Published 26 Sep 2017 in math.RT

Abstract: In this paper, we compute the projective class rings of the tensor product $\mathcal{H}_n(q)=A_n(q)\otimes A_n(q{-1})$ of Taft algebras $A_n(q)$ and $A_n(q{-1})$, and its cocycle deformations $H_n(0,q)$ and $H_n(1,q)$, where $n>2$ is a positive integer and $q$ is a primitive $n$-th root of unity. It is shown that the projective class rings $r_p(\mathcal{H}_n(q))$, $r_p(H_n(0,q))$ and $r_p(H_n(1,q))$ are commutative rings generated by three elements, three elements and two elements subject to some relations, respectively. It turns out that even $\mathcal{H}_n(q)$, $H_n(0,q)$ and $H_n(1,q)$ are cocycle twist-equivalent to each other, they are of different representation types: wild, wild and tame, respectively.

Summary

We haven't generated a summary for this paper yet.