Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two applications of polylog functions and Euler sums (1709.08686v2)

Published 25 Sep 2017 in math.CO

Abstract: Let $I(n):=\int_01 [xn+(1-x)n]\frac1n dx.$ In this paper, we show that $I(n)= \sum_0\infty \frac{I_i}{ni},n\rightarrow \infty$ and we compute $I_i, i =0..5$, obtained by polylog functions and Euler sums. As a corollary, we obtain explicit expressions for some integrals involving functions $ ui, exp(-u), (1 +exp(-u))j , ln(1 + exp(-u))k$. As another asymptotic result, let $S_0(z):=\frac{Li_m(1)}{Li_m(1)-Li_m(z)}$, where $Li_m(z)$ is the polylog function. We provide the asymptotic behaviour of $S_n,n\rightarrow \infty$ where $S_n:=[zn]S_0(z)$. This paper fits within the framework of analytic combinatorics.

Summary

We haven't generated a summary for this paper yet.