Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extensions of hom-Lie color algebras (1709.08620v1)

Published 23 Sep 2017 in math.QA

Abstract: In this paper we study (non-Abelian) extensions of a given hom-Lie color algebra and provide a geometrical interpretation of extensions. In particular, we characterize an extension of a hom-Lie algebra $\mathfrak{g}$ by another hom-Lie algebra $\mathfrak{h}$ and we discuss the case where $\mathfrak{h}$ has no center. We also deal with the setting of covariant exterior derivatives, Chevalley derivative, curvature and the Bianchi identity for the possible extensions in differential geometry. Moreover, we find a cohomological obstruction to the existence of extensions of hom-Lie color algebras, i. e. we show that in order to have an extendible hom-Lie color algebra, there should exist a trivial member of the third cohomology.

Summary

We haven't generated a summary for this paper yet.