Papers
Topics
Authors
Recent
Search
2000 character limit reached

Coherent modeling of longitudinal causal effects on binary outcomes

Published 24 Sep 2017 in stat.ME | (1709.08281v2)

Abstract: Analyses of biomedical studies often necessitate modeling longitudinal causal effects. The current focus on personalized medicine and effect heterogeneity makes this task even more challenging. Towards this end, structural nested mean models (SNMMs) are fundamental tools for studying heterogeneous treatment effects in longitudinal studies. However, when outcomes are binary, current methods for estimating multiplicative and additive SNMM parameters suffer from variation dependence between the causal parameters and the non-causal nuisance parameters. This leads to a series of difficulties in interpretation, estimation and computation. These difficulties have hindered the uptake of SNMMs in biomedical practice, where binary outcomes are very common. We solve the variation dependence problem for the binary multiplicative SNMM via a reparametrization of the non-causal nuisance parameters. Our novel nuisance parameters are variation independent of the causal parameters, and hence allow for coherent modeling of heterogeneous effects from longitudinal studies with binary outcomes. Our parametrization also provides a key building block for flexible doubly robust estimation of the causal parameters. Along the way, we prove that an additive SNMM with binary outcomes does not admit a variation independent parametrization, thereby justifying the restriction to multiplicative SNMMs.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.