Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Etemadi and Kolmogorov inequalities in noncommutative probability spaces (1709.08044v1)

Published 23 Sep 2017 in math.OA, math.FA, and math.PR

Abstract: Based on a maximal inequality type result of Cuculescu, we establish some noncommutative maximal inequalities such as Haj\'ek--Penyi inequality and Etemadi inequality. In addition, we present a noncommutative Kolmogorov type inequality by showing that if $x_1, x_2, \ldots, x_n$ are successively independent self-adjoint random variables in a noncommutative probability space $(\mathfrak{M}, \tau)$ such that $\tau\left(x_k\right) = 0$ and $s_k s_{k-1} = s_{k-1} s_k$, where $s_k = \sum_{j=1}k x_j$, then for any $\lambda > 0$ there exists a projection $e$ such that $$1 - \frac{(\lambda + \max_{1 \leq k \leq n} |x_k|)2}{\sum_{k=1}n {\rm var}(x_k)}\leq \tau(e)\leq \frac{\tau(s_n2)}{\lambda2}.$$ As a result, we investigate the relation between convergence of a series of independent random variables and the corresponding series of their variances.

Summary

We haven't generated a summary for this paper yet.