Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Grassmannian Approach to Zero-Shot Learning for Network Intrusion Detection (1709.07984v1)

Published 23 Sep 2017 in cs.CR and cs.LG

Abstract: One of the main problems in Network Intrusion Detection comes from constant rise of new attacks, so that not enough labeled examples are available for the new classes of attacks. Traditional Machine Learning approaches hardly address such problem. This can be overcome with Zero-Shot Learning, a new approach in the field of Computer Vision, which can be described in two stages: the Attribute Learning and the Inference Stage. The goal of this paper is to propose a new Inference Stage algorithm for Network Intrusion Detection. In order to attain this objective, we firstly put forward an experimental setup for the evaluation of the Zero-Shot Learning in Network Intrusion Detection related tasks. Secondly, a decision tree based algorithm is applied to extract rules for generating the attributes in the AL stage. Finally, using a representation of a Zero-Shot Class as a point in the Grassmann manifold, an explicit formula for the shortest distance between points in that manifold can be used to compute the geodesic distance between the Zero-Shot Classes which represent the new attacks and the Known Classes corresponding to the attack categories. The experimental results in the datasets KDD Cup 99 and NSL-KDD show that our approach with Zero-Shot Learning successfully addresses the Network Intrusion Detection problem.

Citations (13)

Summary

We haven't generated a summary for this paper yet.