Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bootstrapping incremental dialogue systems from minimal data: the generalisation power of dialogue grammars (1709.07858v1)

Published 22 Sep 2017 in cs.CL

Abstract: We investigate an end-to-end method for automatically inducing task-based dialogue systems from small amounts of unannotated dialogue data. It combines an incremental semantic grammar - Dynamic Syntax and Type Theory with Records (DS-TTR) - with Reinforcement Learning (RL), where language generation and dialogue management are a joint decision problem. The systems thus produced are incremental: dialogues are processed word-by-word, shown previously to be essential in supporting natural, spontaneous dialogue. We hypothesised that the rich linguistic knowledge within the grammar should enable a combinatorially large number of dialogue variations to be processed, even when trained on very few dialogues. Our experiments show that our model can process 74% of the Facebook AI bAbI dataset even when trained on only 0.13% of the data (5 dialogues). It can in addition process 65% of bAbI+, a corpus we created by systematically adding incremental dialogue phenomena such as restarts and self-corrections to bAbI. We compare our model with a state-of-the-art retrieval model, MemN2N. We find that, in terms of semantic accuracy, MemN2N shows very poor robustness to the bAbI+ transformations even when trained on the full bAbI dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Arash Eshghi (23 papers)
  2. Igor Shalyminov (20 papers)
  3. Oliver Lemon (39 papers)
Citations (26)