Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Iterative Reconstruction of Memory Kernels (1709.07805v1)

Published 22 Sep 2017 in cond-mat.soft

Abstract: In recent years, it has become increasingly popular to construct coarse-grained models with non-Markovian dynamics to account for an incomplete separation of time scales. One challenge of a systematic coarse-graining procedure is the extraction of the dynamical properties, namely, the memory kernel, from equilibrium all-atom simulations. In this article, we propose an iterative method for memory reconstruction from dynamical correlation functions. Compared to previously proposed noniterative techniques, it ensures by construction that the target correlation functions of the original fine-grained systems are reproduced accurately by the coarse-grained system, regardless of time step and discretization effects. Furthermore, we also propose a new numerical integrator for generalized Langevin equations that is significantly more accurate than the more commonly used generalization of the velocity Verlet integrator. We demonstrate the performance of the above-described methods using the example of backflow-induced memory in the Brownian diffusion of a single colloid. For this system, we are able to reconstruct realistic coarse-grained dynamics with time steps about 200 times larger than those used in the original molecular dynamics simulations.

Summary

We haven't generated a summary for this paper yet.