Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Core-biased random walks in complex networks (1709.07715v1)

Published 22 Sep 2017 in physics.soc-ph and cs.SI

Abstract: A simple strategy to explore a network is to use a random-walk where the walker jumps from one node to an adjacent node at random. It is known that biasing the random jump, the walker can explore every walk of the same length with equal probability, this is known as a Maximal Entropy Random Walk (MERW). To construct a MERW requires the knowledge of the largest eigenvalue and corresponding eigenvector of the adjacency matrix, this requires global knowledge of the network. When this global information is not available, it is possible to construct a biased random walk which approximates the MERW using only the degree of the nodes, a local property. Here we show that it is also possible to construct a good approximation to a MERW by biasing the random walk via the properties of the network's core, which is a mesoscale property of the network. We present some examples showing that the core-biased random walk outperforms the degree-biased random walks.

Summary

We haven't generated a summary for this paper yet.