Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learned Features are better for Ethnicity Classification (1709.07429v2)

Published 21 Sep 2017 in cs.CV

Abstract: Ethnicity is a key demographic attribute of human beings and it plays a vital role in automatic facial recognition and have extensive real world applications such as Human Computer Interaction (HCI); demographic based classification; biometric based recognition; security and defense to name a few. In this paper we present a novel approach for extracting ethnicity from the facial images. The proposed method makes use of a pre trained Convolutional Neural Network (CNN) to extract the features and then Support Vector Machine (SVM) with linear kernel is used as a classifier. This technique uses translational invariant hierarchical features learned by the network, in contrast to previous works, which use hand crafted features such as Local Binary Pattern (LBP); Gabor etc. Thorough experiments are presented on ten different facial databases which strongly suggest that our approach is robust to different expressions and illuminations conditions. Here we consider ethnicity classification as a three class problem including Asian, African-American and Caucasian. Average classification accuracy over all databases is 98.28%, 99.66% and 99.05% for Asian, African-American and Caucasian respectively.

Citations (32)

Summary

We haven't generated a summary for this paper yet.