Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a ternary generalization of Jordan algebras (1709.06826v1)

Published 20 Sep 2017 in math.RA

Abstract: Based on the relation between the notions of Lie triple systems and Jordan algebras, we introduce the $n$-ary Jordan algebras,an $n$-ary generalization of Jordan algebras obtained via the generalization of the following property $\left[ R_{x},R_{y}\right] \in Der\left( \mathcal{A}\right)$, where $\mathcal{A}$ is an $n$-ary algebra. Next, we study a ternary example of these algebras. Finally, based on the construction of a family of ternary algebras defined by means of the Cayley-Dickson algebras, we present an example of a ternary $D_{x,y}$-derivation algebra ($n$-ary $D_{x,y}$-derivation algebras are the non-commutative version of $n$-ary Jordan algebras).

Summary

We haven't generated a summary for this paper yet.