Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information-Coupled Turbo Codes for LTE Systems (1709.06774v1)

Published 20 Sep 2017 in cs.IT and math.IT

Abstract: We propose a new class of information-coupled (IC) Turbo codes to improve the transport block (TB) error rate performance for long-term evolution (LTE) systems, while keeping the hybrid automatic repeat request protocol and the Turbo decoder for each code block (CB) unchanged. In the proposed codes, every two consecutive CBs in a TB are coupled together by sharing a few common information bits. We propose a feed-forward and feed-back decoding scheme and a windowed (WD) decoding scheme for decoding the whole TB by exploiting the coupled information between CBs. Both decoding schemes achieve a considerable signal-to-noise-ratio (SNR) gain compared to the LTE Turbo codes. We construct the extrinsic information transfer (EXIT) functions for the LTE Turbo codes and our proposed IC Turbo codes from the EXIT functions of underlying convolutional codes. An SNR gain upper bound of our proposed codes over the LTE Turbo codes is derived and calculated by the constructed EXIT charts. Numerical results show that the proposed codes achieve an SNR gain of 0.25 dB to 0.72 dB for various code parameters at a TB error rate level of $10{-2}$, which complies with the derived SNR gain upper bound.

Citations (1)

Summary

We haven't generated a summary for this paper yet.