Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Colored Khovanov-Rozansky homology for infinite braids (1709.06666v2)

Published 19 Sep 2017 in math.QA and math.GT

Abstract: We show that the limiting unicolored $\mathfrak{sl}(N)$ Khovanov-Rozansky chain complex of any infinite positive braid categorifies a highest-weight projector. This result extends an earlier result of Cautis categorifying highest-weight projectors using the limiting complex of infinite torus braids. Additionally, we show that the results hold in the case of colored HOMFLY-PT Khovanov-Rozansky homology as well. An application of this result is given in finding a partial isomorphism between the HOMFLY-PT homology of any braid positive link and the stable HOMFLY-PT homology of the infinite torus knot as computed by Hogancamp.

Summary

We haven't generated a summary for this paper yet.